March 2009 LUNCHEON MEETINGS

<table>
<thead>
<tr>
<th>Westside</th>
<th>Reconciling Wireline and LWD Depth Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Plaza</td>
<td>by Alexander Kostin</td>
</tr>
<tr>
<td>Wednesday, March 11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northside</th>
<th>Integrating Applications Using LWD Acoustic Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halliburton</td>
<td>by Derek Buster</td>
</tr>
<tr>
<td>Wednesday, March 18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Downtown</th>
<th>Enhanced Accuracy in Flow-unit-definition in a Carbonate Reservoir by Integrating Conventional Core Analysis with the Interpretation of Borehole Images, NMR and Conventional logs within a Stratigraphic Framework; A case study from the Permian Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hess Office</td>
<td>by Vivek Chitale</td>
</tr>
<tr>
<td>Tuesday, March 17</td>
<td></td>
</tr>
</tbody>
</table>
March 2009

The Houston Chapter has been very busy in the last few weeks with record numbers of attendees at all the meeting locations. In particular we had Dan Buller from Halliburton present his workflow for the Haynesville Shale and we had far too many requests than we could accommodate for his talk at the Downtown meeting location. It is no coincidence that with shales being at the forefront of activity in the US industry that we decided to focus on "Shale Gas Evaluation and Completions" for the Spring Topical Conference to be held on Wednesday, May 13 at the Chevron auditorium downtown. Because of the popularity of his talk, Dan is gracious enough to speak once again at this particular event and we hope those of you who missed him the first time can catch him there.

It's also that time once again to start getting the word out concerning elections to the 2009-2010 board of the Houston Chapter. Anyone who would like to be considered for office should forward their name by March 31st (or as soon as possible) via email to secretary@spwla-houston.org. In addition, we will need a brief biography (500 words maximum) and a brief statement from the nominee to include in the ballot as to their desired position. An email ballot will be sent to all members by April 15th. As previously stated, the terms for membership to the Houston Chapter are pretty simple: if you are on our mailing list you are a member and are eligible to stand. Only the President is required to be a member of the International SPWLA.

Plans are also going forward with all the activities surrounding the 50th Annual SPWLA Symposium at The Waterway Marriott in The Woodlands, TX.


And please note that the Downtown meeting date has changed from the normal fourth Wednesday of the month to Tuesday, March 17th.

Joe Comisky
Houston Chapter President
Erle was fiercely independent.

At Halliburton we still are.

Erle Halliburton built his service company from scratch. He couldn’t be bought. He couldn’t be discouraged. And the rest is history.

But the key to Erle’s success was the repeat business of the many independents he served. Halliburton crews would travel any distance and get the job done right. Customer satisfaction was everything. And America’s independents weren’t disappointed.

Though Erle’s long gone, he’s well represented by the independent-minded people who work here today. If you need us, just call.

No job is too big, small, conventional or complex.

Halliburton has the energy to help. To find out how, visit us at www.halliburton.com.

Halliburton

Unleash the energy™
Reconciling Wireline and LWD Depth Measurements

by

Alexander Kostin

Abstract

Depth is arguably the most important measurement made while logging. Errors in depth measurements result in inconsistent geological mapping, incorrect fluid contacts location, inaccurate reserves estimation, etc. Depth errors increase with depth driving geological uncertainties in ultra-deep wells even higher. When comparing LWD and wireline logs we often observe depth discrepancies of several tens of feet. This is not surprising since LWD logs are referenced to the driller's depth and the wireline depth is measured directly by the logging company. Typically, depth on either wireline or LWD log is assumed more accurate and is used as a reference log. This presentation will demonstrate that in a general case, neither of these logs should be given a preference, but instead environmental depth correction should be applied to both data sets. Several case studies will be presented to support this conclusion.

Biography

Alexander Kostin received M.Sc. degree in Applied Physics and Mathematics from Moscow Institute of Physics & Technology, Russia in 2003. After graduation he joined Schlumberger and worked as LWD field engineer in Caspian, project technical leader in the R&D center and is currently a petrophysicist with Schlumberger Data & Consulting Services. He has been closely involved into development of LWD depth correction algorithms.

Reference papers

SPE 109972 "Improving LWD Image and Formation Evaluation by Utilizing Dynamically Corrected Drilling-Derived LWD Depth and Continuous Inclination and Azimuth Measurements" G.A. Bordakov, A.V. Kostin, J. Rasmus, D. Heliot, Schlumberger; H. Laastad, Statoil; and E.J. Stockhausen, Chevron

SPE 102175 "A New Method for Improving LWD Logging Depth" C.R. Chia, Schlumberger; H. Laastad, Statoil; A.V. Kostin, F. Hjortland, G.A. Bordakov, Schlumberger

SPE 110318 "A Technique for Improving the Accuracy of Wireline Depth Measurements" Peter Fitzgerald, Schlumberger, Bengt K. Pedersen, Statoil
Going to extremes for you

As the world record holder in several directional drilling services categories, Weatherford knows that, when it comes to reliability, you have to go to extremes. That’s why we build our MWD/LWD and rotary-steerable systems to withstand hostile environments better than the rest.

From routine to extreme, we deliver.

Weatherford’s drilling systems greatly reduce well construction costs with faster ROP, higher LWD logging speeds and smoother boreholes—making them ideal for both routine and extreme applications.

To learn more about how our full suite of directional drilling, LWD and rotary-steerable systems are engineered for reliable and repeatable performance, visit weatherford.com.

Our business is built All Around You.
Abstract
This paper presents real-time applications of Logging While Drilling (LWD) Quadrupole acoustic measurements and their value in hydrocarbon indication, geologic hazard mitigation, and reservoir petrophysics. Quadrupole waves commonly referred to as screw waves, deliver minimally dispersive shear slowness measurements in the LWD environment. Traditionally, acoustic logging measurements are acquired from wire line instruments, generally from monopole and dipole excited modes. In a "While Drilling" application, the dipole mode is affected by a large collar wave arrival which presents challenges to resolve the true formation shear wave. Typically the processing of dipole waveforms is required after the run, and an inversion is required to deliver a formation shear measurement. The LWD dipole mode is extremely dispersive, 15-25% measurement error primarily due to borehole occupancy. All LWD dipole modes do not represent the true formation shear slowness. Quadrupole modes, which do not suffer from this direct coupling with the collar mode, allow the measurement of formation shear slowness with minimal to no dispersion, less than 5% variation in most cases.

In these presented cases, real-time Quadrupole acoustic measurements resolve the formation shear slowness. Incorporation of true formation shear data into geoscience applications such as log hydrocarbon indicators, porosity computations, and formation shear failure analysis adds value to the reservoir description almost immediately after the formation is drilled.

Biography
Derek Buster, Senior Geoscientist, B.S. in Physics. Currently a Geophysics Graduate Student at the University of Houston with 6 years of Oilfield Industry experience, 3 years as a Field Engineer, 3 years as a Geoscientist. Presently working on borehole acoustic interpretation and related geophysical applications.
How deeply do you understand your stress?

The new Sonic Scanner® acoustic scanning platform enables accurate measurement of the stress-dependent properties of rocks near the wellbore. Now you can make advanced acoustic measurements axially, azimuthally, and radially. The Sonic Scanner multiple depths of investigation, excellent waveform quality, and simple presentations all help to reduce the complexity of sonic logging, without compromising the depth of information.

Get the most comprehensive understanding of your rock, improve your fracture planning, sand control, and perforating design. See stress on a whole new level, with an extra dimension.

www.slb.com/understand

Understanding your reservoir

Schlumberger

*Mark of Schlumberger. © 2007 Schlumberger. DP-TE-074
Abstract

Primary depositional facies control sediment types and sediment body geometries in carbonate systems, which in turn control primary pore type(s) and reservoir geometries. Therefore, the reservoir modeling of carbonates requires a better understanding of the original rock fabric types in addition to the knowledge of depositional facies. Accurate identification of primary rock fabric can be used to predict pore network characteristics - porosity, permeability and pore connectivity- that define a flow unit.

Accurate evaluation of a carbonate reservoir in terms of fluid flow units requires integration of critical geologic attributes determined from careful core description, including original rock type determination, depositional facies interpretation, and reservoir facies determination, with wireline log signatures. Electrical borehole images, when properly calibrated to core, can be used to identify primary facies and reservoir types in uncored wells. This paper presents the results of integrating the sedimentological descriptions of conventional cores and petrophysical analysis with the interpretation of borehole images, NMR and conventional logs.

Wireline logs and conventional core were acquired from a well producing in a Wolfcamp carbonate reservoir in the Permian Basin for the present study. Dunham-based rock type assemblages were classified into primary depositional facies and grouped into high frequency cycle stacking patterns. Electrical borehole image was used not only for the electro facies correlation with the depositional facies but also for the purpose of estimating porosity and permeability.

The image-log derived electro facies and bedding in the carbonate as well as the internal fabric of the carbonates (sedimentary structures and diagenetic textures such as brecciation), and the estimates of different porosity fractions and permeability determined by using the new interpretation technique closely resemble the core descriptions and conventional core laboratory analysis of porosity and permeability. These results are encouraging as these correlation(s) should be applicable in future to the newly drilled wells in the similar geological facies in the same region where there is no core control. It becomes apparent that the image log interpretation offers a unique method to enhance the accuracy in defining the flow units within stratigraphic sequences in such regions where initial calibration between the image logs and conventional cores has been accomplished successfully.

Biography

VIVEK CHITALE started his career in late 80s as a Senior Geologist with Oil India Ltd. Later he worked for Enron Oil and Gas in India as Chief Geologist for the offshore carbonate fields. Karst carbonates by integrating core descriptions, core analyses and the state of the art wireline and LWD technologiesVivek is currently the Global Business Manager, Reservoir Evaluation Services, for Halliburton Wireline and Perforating based at Houston.

Co-authors: Clive Johnson, Hunter Manley, David Entzminger, Lyn Canter
How did we make the Best — Better?

Precision. Strength. Reliability.

The XMAC™ F1 high-performance acoustic logging service from Baker Atlas is not only the most accurate in the industry — but now logs even faster.

Only one logging pass is needed to acquire monopole, dipole and cross-dipole data — and depth corrections between runs are not required.

And with a compressional strength of 45,000 pounds, we can log even your most complex wells pipe conveyed.

You can better evaluate your reservoir, reduce your risk and maximize your hydrocarbon recovery while saving valuable rig time by choosing the best acoustic logging service in the industry — XMAC F1.

Baker Atlas

The BEST Choice
Real-time fluid analysis, clean PVT samples.

MRILab™ service uses magnetic resonance imaging to distinguish between oil-based mud filtrate and native crude. And it gives you real-time, laboratory-quality estimates of your crude's viscosity and gas/oil ratio. You get the measurements in minutes, while the RDT™ assembly is downhole.

Halliburton has the energy to help.

Call your representative about running the new MRILab service with RDT tool or visit us at www.halliburton.com.

Unleash the energy™

Halliburton
Production Optimization
Our focus is Client Satisfaction!

And our ISO 9001:2000 Quality Management System Proves It!

As the recognized leader in core analysis and formation characterization, Core Lab’s Houston Advanced Technology Center is pleased to announce that our Quality Management System has been ISO 9001:2000 certified. Our laboratory provides state of the art measurements with unmatched quality control and equipment calibration standards.

At Core Lab every job concludes with a customer feedback survey. We are constantly working to enhance customer satisfaction and continue to improve our performance.

No one has more customer focused core and reservoir fluid based solutions for optimizing your reservoir.

To learn about our customer focused Quality Management System, please contact Core Lab.
(713) 325-2473  psinfo@corelab.com

The World Leader in Digital Data Conversion and Management

- 400,000 Wells in digital format — Over 1,000,000 Logs
- 56,000 Directional Surveys
- 1,300,000 Rasters
- Over 38,000 Gulf of Mexico Wells
- All Gulf of Mexico Logs provided in OTF since 1996 — LWD & Wireline
- Well Log & Map Digitizing using IHS Energy’s Proprietary Data Capture System
- Petrophysical Data Processing providing Workstation-Ready Data

IHS ENERGY  |  Contact us at: 504.581.3282

www.IHSLogNet.com
PathFinder® LWD Sonic Services

Highly reliable, accurate and versatile, the PathFinder LWD Sonic Service provides wireline quality compressional and shear slowness data.

- Standard PathFinder Sonic tools provide real-time compressional and fast shear slowness data.

- Extended measurement e-sonic tools operate at 7 kHz and 15 kHz frequencies to provide slow shear measurements and real-time compressional measurements.

Reliability, Accuracy, Versatility. We Deliver.

For more information contact your local PathFinder Representative

www.pathfinderlwd.com

© 2004 PathFinder Energy Services, Inc. All Rights Reserved
ROCK-BASED PETROPHYSICAL SOLUTIONS

Core Lab offers a unique approach to petrophysical evaluations for even the most challenging reservoir.

- Deep Water, Deep Shelf
- Tight Gas Sands
- Gas & Oil Shale
- Heavy Oil & EOR

Pay Recognition  Core-Log Data Integration  Improved Reservoir Estimates
Completion Recommendations  Reservoir Performance Prediction

Answers From The Rocks
Houston  (713) 328-2121

www.corelab.com